8,813 research outputs found

    Variable-frequency-controlled coupling in charge qubit circuits: Effects of microwave field on qubit-state readout

    Get PDF
    To implement quantum information processing, microwave fields are often used to manipulate superconuducting qubits. We study how the coupling between superconducting charge qubits can be controlled by variable-frequency magnetic fields. We also study the effects of the microwave fields on the readout of the charge-qubit states. The measurement of the charge-qubit states can be used to demonstrate the statistical properties of photons.Comment: 7 pages, 3 figure

    Correlation-induced suppression of decoherence in capacitively coupled Cooper-pair boxes

    Full text link
    Charge fluctuations from gate bias and background traps severely limit the performance of a charge qubit in a Cooper-pair box (CPB). Here we present an experimentally realizable method to control the decoherence effects of these charge fluctuations using two strongly capacitively coupled CPBs. This coupled-box system has a low-decoherence subspace of two states. Our results show that the inter-box Coulomb correlation can help significantly suppress decoherence of this two-level system, making it a promising candidate as a logical qubit, encoded using two CPBs.Comment: 5 pages, 2 figures. Phys. Rev. B, in pres

    Switchable coupling between charge and flux qubits

    Full text link
    We propose a hybrid quantum circuit with both charge and flux qubits connected to a large Josephson junction that gives rise to an effective inter-qubit coupling controlled by the external magnetic flux. This switchable inter-qubit coupling can be used to transfer back and forth an arbitrary superposition state between the charge qubit and the flux qubit working at the optimal point. The proposed hybrid circuit provides a promising quantum memory because the flux qubit at the optimal point can store the tranferred quantum state for a relatively long time.Comment: 5 pages, 1 figur

    Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit

    Full text link
    We analyze the optical selection rules of the microwave-assisted transitions in a flux qubit superconducting quantum circuit (SQC). We show that the parities of the states relevant to the superconducting phase in the SQC are well-defined when the external magnetic flux Φe=Φ0/2\Phi_{e}=\Phi_{0}/2, then the selection rules are same as the ones for the electric-dipole transitions in usual atoms. When Φe≠Φ0/2\Phi_{e}\neq \Phi_{0}/2, the symmetry of the potential of the artificial "atom'' is broken, a so-called Δ\Delta-type "cyclic" three-level atom is formed, where one- and two-photon processes can coexist. We study how the population of these three states can be selectively transferred by adiabatically controlling the electromagnetic field pulses. Different from Λ\Lambda-type atoms, the adiabatic population transfer in our three-level Δ\Delta-atom can be controlled not only by the amplitudes but also by the phases of the pulses
    • …
    corecore